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SUJMMARlY

A unimod,(ý1 Funittion of one. v,-i-iable is defined on an

interval. No regul-arlLy conditions involving continuity, deri-

vatives, etc., are assuiind. We wish to minimize the nwaber

of calculations of' values of the function in order to assure

the location of its maximum to a prescribed degree of accuracy.

The solution of this problem and its discrete analogue Involves

the well-known Fibonacci sequence.
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BEST EXPLORATION FOR MAXIMUM IS FIBONACCIAN

Selmer M. Johnson

When the author obtained the result presented here, he

thought it was new. SuLsequently, it was found that the result

had previously been published by J. Kiefer [1]. However, the

simplicity of the present proof may ,justify a short note on the

problem.

In some practicoaL problems the only way to locate a

maximum of a function is to observe the values of the function

at various points and ,(--,mpare them. For example, the function

may not be continuous, or perhaps the derivatives may be too

hard to find. ana]yticaý ly, etc. Wi.kh this in mind, and as i

first step toward the so ution of the general problem, we

consider the case of a, unimodal function on an interval.

Definition: A function flx) is unimodal if there is

an X0 such that f is either strict.y increas1ng for x < X0

and strictly decreasing, for x > x0. or else strictly increasing

for x -, x 0 and strictly incrensi.ng for x > x(.

For examap e, c,)ncave functiont; are unirnodal]

In [11, Kiefer csidr•; the Pr IUblei of deterlmiing an

interval containing the puintL at whi{:h a unilmodal function on

the unit interval possesses a maximum. No regularity conditions
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concerning continuity or derivatives, etc., are assumed. He

givýes, for every e > 0 and ,%ely number n of values of the

argument at which the function may be observed, a procedure

which is s -minimax among the class of all sequential non-

randomized procedures which texiinate by giving an interval

containing the required point, where the payoff is the length

of the final interval.

We present a short proof' of the result after it has been

restated as follows.

Theorem 1.. Let y - f(x) be any wujimodal function defined

on an Interval. 0 x < L . Let F - sup of all L with the
n n-

property that we can always locate the n-.ximum of f(x) on a

unit-length subinterval by ca• colating n values of the function.

Then F is the n-th Fiboxiacci raumber; that is,

F n-_]. + F n-2' 2)

with F0 . F,1 .

The proof wiil be by induction.

We observe first that F. - F1 - I follows from the

definition of Fn, 6ince just one va]ue of the function ,ives

no information concerning the location of the maximum.

Fix n P• 2 and calculate y1 M f(xI), Y2 m frx2), where

0 < xI < x2 <Ln. If y] I s2, the maximum occurs on (0, x2 )

since f(x) is strictly Luimoda] . If y 2> Yl) the maximum is
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on (X1, L n). If Y1 - y2, choose either of the above intervals,

even though we know the maximum occurs on (X1) x2 ). Ths aý

each stage after the first computation we are left with a sub-

interval and the value of f(x) at some interior poiat x. Since

values at the ends of an interval do not always give usable

information relative to our problem, we restrict our attention

to the interior points.

For n - 2, L 2 -2 , take x 1 - e, x 2  i, for

arbitrarily smail e > 0. By the argument of the preceding

parn-ra-ph, we ha.ve F -x + W .'
2 1. 0

Fix n > 2, and assume that Fk Fk_1 + Fk- 2 for

k = 2, .. , n - 1. We shall show, that

-F +F
l•• n-i .n-2

For if we calculate at x and x on L), L) we have the picture

Y] Y2

x1 X2 Ln

If Y 1 Y 2 ) we have the new picture

yl
0C) x 2

But then x2 < Fn- since we huve only n - 2 more choices

with x a first choice for the case k - n - 1, Moreover,
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1 < Fn-2, since the maximun could occur on (0, xl) with two

choices of x already used.

Similarly if y 2 > y1, we have L - x < F . Thus
n I n-i

L <F +X <F + Fn- so that F < F + Fn_.Ln n-i Fn-I •-'n-F-

Now choose L ( )(F 1 + F 2 ), x ( (i - 2 )n+2'

aihd x2 - (I - A) F Since e is arbitrarily small this shows
22 ni

that Fn - Fn-1 + F so Theorem 1 is proved. Moreover, the

procedure is optimal for a given e, since after ccoparing I(x )

and f(x ) we are left with an interval uf length L (i -
2 n 2

n-i' and with a v&iue at optimal first position fur this

smaller interval. Continuing in this way we have I., (1 -

for k < n; in particular, L,• -I )F 2 - e, and the final

interval is of unit length.

The F form the sequencea

15, 1, 2, 3, r5, 8, 13, 21, 34, 55, .

with F20 > 10000., Thus a maximum can a1lways be located within

10-4 of the original interval length with 20 calculations. Using

the more conventional technique of" computing f j,) and ' +

where x is at the midpoint of the interval, may take as many as

28 computations.

As Kiefer remarks, since F • /Fn rapidly approaches its

limit T - !( )/7 + i) - 1. 4', one could choose the first two

values of x at L./-r = .618 L, from either end of the interval. This

would be an excellent approximation at each stage except for the
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last few choices, especially it n is not fixed in advance but

is determined after several values have been observed (e.g.,

more observations might be taken it the function appears to

be sharply peaked near its maximum). This constant ratio to

determine the next x would be useful in a cumputing-machine

code.

A line segment is said to be divided according to the

"golden section" if one part is -r times the other. The

approximation suggested above gives at each stage an inter-vadl

which is Livided by the golden section at its x value but

.reduced in scale from the previour, intcrval. This follows

from the relation

L TT
1

L'i T-1
L(l-- ) -

T.

The Discrete Case

Theorem 2. Let y f fx×) be any unimodal function defined

on a discrete set of H points. Let K n max H n such that then n n

function's maximum coan always be identified in n observations.

Then

Kn - -1 + F n_> I

Proof. Number the points 1, 2, 6, ... , H. Observe that

K1 - 3-, K, - 2, K5 = 4. FiY n > 3 and as,;ume K- -. + Fk+1

for k - n. Calculate f(x) at xI and x2 . By arguments analogous
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to those of Theorem 1, we must have

xl <Kn 2 i H -x < K
1- +-, n -- n-i'

So Tnat

Hn - n-2 I K n-1 (F ) + 1i n F n

This maximum Is attained when F, • I and x2 F Thus

Theorem 2 is proved; moreover, the optimal construction is

given.

:,1
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